Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells
نویسندگان
چکیده
The specific 26S proteasome inhibitor, bortezomib (BZ) potently induces apoptosis as well as autophagy in metastatic breast cancer cell lines such as MDA-MB-231 and MDA-MB-468. The combined treatment of clarithromycin (CAM) and BZ significantly enhances cytotoxicity in these cell lines. Although treatment with up to 100 µg/ml CAM alone had little effect on cell growth inhibition, the accumulation of autophagosomes and p62 was observed after treatment with 25 µg/ml CAM. This result indicated that CAM blocked autophagy flux. However, the combined treatment of BZ and CAM resulted in more pronounced autophagy induction, as assessed by increased expression ratios of LC3B-II to LC3B-I and clearance of intracellular p62, than treatment with BZ alone. This combination further enhanced induction of the pro-apoptotic transcription factor CHOP (CADD153) and the chaperone protein GRP78. Knockdown of CHOP by siRNA attenuated the death-promoting effect of BZ in MDA-MB-231 cells. A wild-type murine embryonic fibroblast (MEF) cell line also exhibited enhanced BZ-induced cytotoxicity with the addition of CAM, whereas a Chop knockout MEF cell line completely abolished this enhancement and exhibited resistance to BZ treatment. These data suggest that endoplasmic reticulum (ER)-stress mediated CHOP induction is involved in pronounced cytotoxicity by combining these reagents. Simultaneously targeting two major intracellular protein degradation pathways such as the ubiquitin-proteasome system by BZ and the autophagy-lysosome pathway by CAM may improve the therapeutic outcome in breast cancer patients via ER-stress mediated apoptosis.
منابع مشابه
Targeting bortezomib-induced aggresome formation using vinorelbine enhances the cytotoxic effect along with ER stress loading in breast cancer cell lines
The ubiquitin-proteasome and autophagy-lysosome pathways are two major self-digestive systems for cellular proteins. Ubiquitinated misfolded proteins are degraded mostly by proteasome. However, when ubiquitinated proteins accumulate beyond the capacity of proteasome clearance, they are transported to the microtubule-organizing center (MTOC) along the microtubules to form aggresomes, and subsequ...
متن کاملMacrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells
The specific 26S proteasome inhibitor bortezomib (BZ) potently induces autophagy, endoplasmic reticulum (ER) stress and apoptosis in multiple myeloma (MM) cell lines (U266, IM-9 and RPMI8226). The macrolide antibiotics including concanamycin A, erythromycin (EM), clarithromycin (CAM) and azithromycin (AZM) all blocked autophagy flux, as assessed by intracellular accumulation of LC3B-II and p62....
متن کاملTargeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells
The inhibitory effects of macrolide antibiotics including clarithromycin (CAM) on autophagy flux have been reported. Although a macrolide antibiotic exhibits no cytotoxicity, its combination with bortezomib (BZ), a proteasome inhibitor, for the simultaneous blocking of the ubiquitin (Ub)‑proteasome and autophagy‑lysosome pathways leads to enhanced multiple myeloma (MM) cell apoptosis induction ...
متن کاملSelective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition.
The PI3K/Akt pathway plays a crucial role in the pathogenesis of multiple myeloma (MM) in the bone marrow (BM) milieu. However, efficacy of selective and potent Akt inhibition has not yet been fully elucidated. In this study, we, therefore, examined the biologic impact of selective and potent Akt inhibition by a novel allosteric inhibitor TAS-117. TAS-117 induced significant growth inhibition, ...
متن کاملEGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism
The proteasome inhibitors Bortezomib (BZM) and MG132 trigger cancer cell death via induction of endoplasmic reticulum (ER) stress and unfolded protein response. Epigallocatechin gallate (EGCG), the most bioactive green tea polyphenol, is known to display strong anticancer properties as it inhibits proteasome activity and induces ER stress. We investigated whether combined delivery of a proteaso...
متن کامل